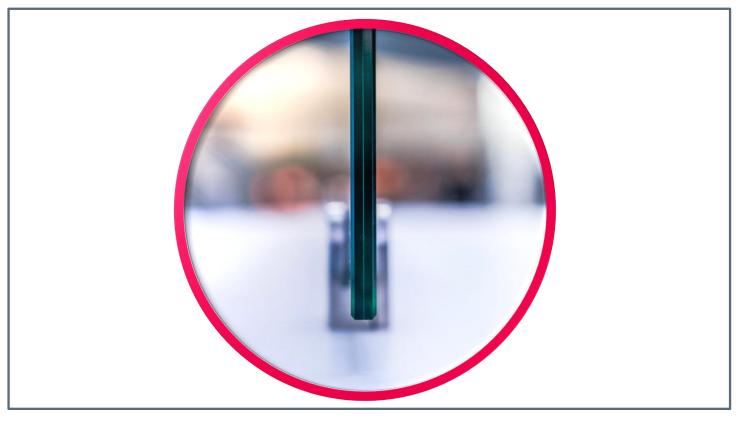
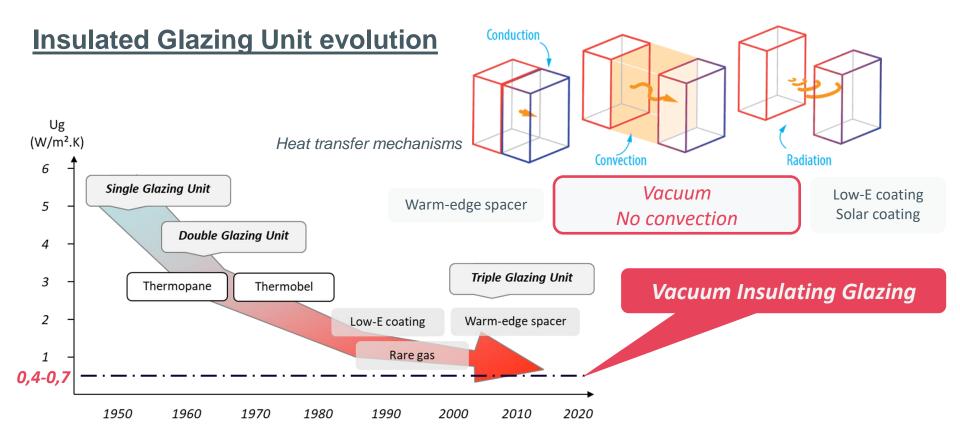


Vacuum Insulated Glass Design, Applications & Certifications Louis DELLIEU

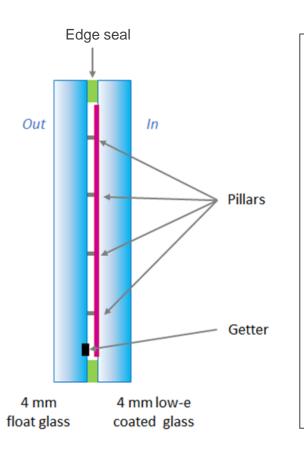


27/03/2025 - Fasády 2025


AGENDA

- 1. Introduction to Vacuum Insulated Glass (VIG) Technology
- 2. Design and Installation Requirements
- 3. Showcase of Project Examples
- 4. Overview of the Certification Framework
- 5. Key Takeaways and Conclusion

1. Introduction to VIG Technology



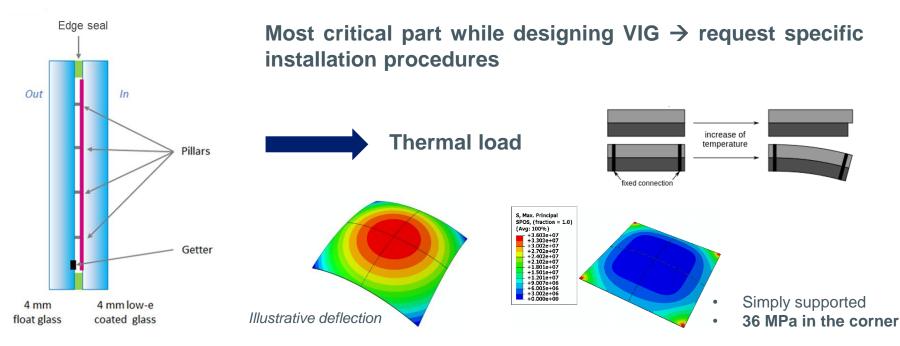
Introduction to VIG Technology

Introduction to VIG Technology

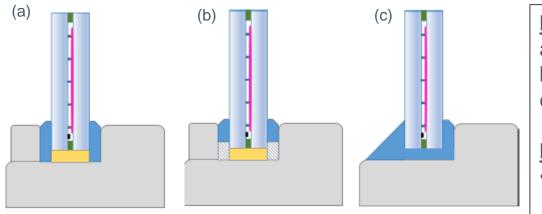
.

- **Glass Panes**: Two sheets of glass (3, 4 or 6 mm), typically separated by a narrow vacuum gap.
- Vacuum Gap: A thin space between the glass panes, devoid of air, to minimize heat transfer (0,1 – 0,3 mm).
- **Edge Seal**: A durable, airtight ceramic or metallic seal around the edges to maintain the vacuum over time.
- **Support Pillars**: Micro spacers placed between the panes to prevent them from collapsing under atmospheric pressure (20 40 mm pitch).
- **Low-Emissivity Coating**: A special coating applied to one or both panes to enhance thermal insulation by reflecting infrared radiation.
- **Getter Material**: A substance placed inside the vacuum cavity to absorb any residual gases and maintain the vacuum quality.

Introduction to VIG Technology


- Thermal Insulation: Superior energy efficiency with minimal heat transfer
 - > $Ug = 0,4 0,7 W/m^2K$, depending on pillars pitch and coatings.
- Ultra-Thin Design: Slim profile compared to traditional double or triple glazing.
 - > From 6,7 mm to 12 mm in average
- Enhanced Acoustic Performance: Effective noise reduction for quieter interiors.
 - ➢ Rw = 36 dB
- **Durability:** Long-lasting vacuum seal and robust construction.
 - 15 to 20 years of warranty
 - > 25 to 60 years of lifespan
- **Recyclability:** Fully recyclable without the need for dismantling.

2. Design and Installation Requirements


Design and Installation Requirements

- When designing VIG, specific VIG loads, wrt standard IGU, are considered: pillars and thermal loads.
- Other external loads, e.g. barrier or wind loads, are similar between standard IGU and VIG.
- Contrary to standard IGU no climatic load occurs with VIG due to the absence of gas inside the cavity.

Design and Installation Requirements

- Thermal load deformation and high stress at the framed VIG corner can cause glass breakage.
- To prevent this, soft and thick enough* EPDM gaskets or putty should be used to avoid hard contact between the VIG and its frame.

* The level of softness and thickness should be discussed with the VIG supplier.

Installation examples with putty

- a) Installation with putty
- b) Installation with joint sealing foam
- c) Installation with flashing putty

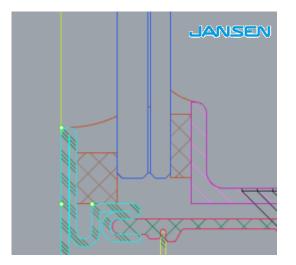
Important additional features

- Edge clearance can be reduced to 2-3 mm (no risk of water leak)
- Drainage not necessary

3. Showcase of Projects Examples

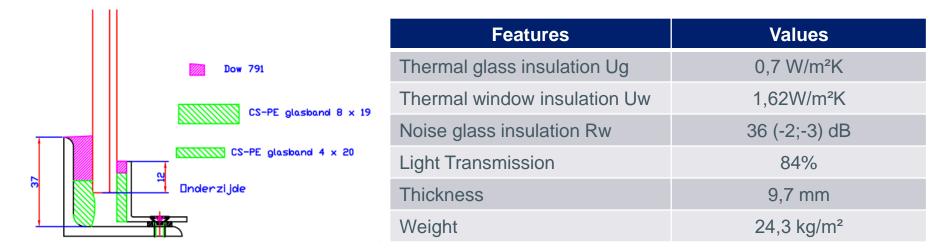
Kanal – Brussels (BE)

Project features


- 1 000 m² of new facade (1 m x 2 m) and 2 500 m² of restoration of existing facade(1,2 m x 1,2 m).
- Both existing and new framing made of steel.
- Used of low iron VIG 9,7 mm
- Designed to achieve minimal thickness with highest thermal insulation.

Kanal – Brussels (BE)

• For the **new** steel profile, a combination of low Young modulus PE foam and putty was used for the window installation.

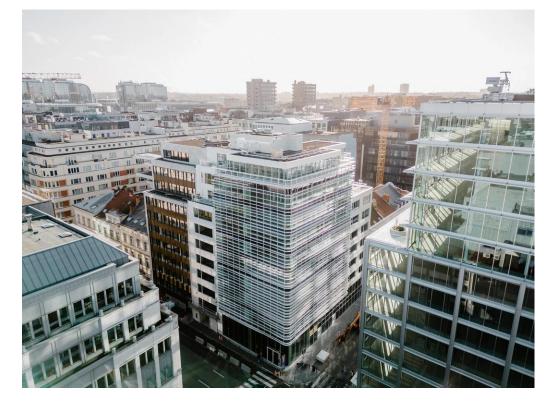


Features	Values
Thermal glass insulation Ug	0,7 W/m²K
Thermal window insulation Uw	1,48W/m²K
Noise glass insulation Rw	36 (-2;-3) dB
Light Transmission	84%
Thickness	9,7 mm
Weight	24,3 kg/m ²

Kanal – Brussels (BE)

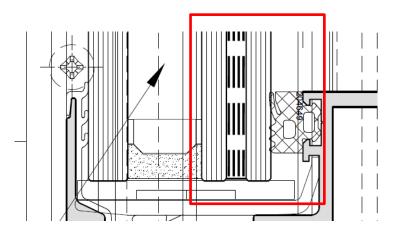
- For the **old** steel profile, a combination of low Young modulus PE foam and putty was used for the window installation.
- The Uw is higher due to the absence of thermal bridge element in the frame.

Belnine Project – Brussels (BE)


Project features

- 1 200 m² new façade (2,4 m x 1 m) for an 11-floor office building in Brussels (rue Belliard) with aluminium profile.
- Designed to achieve maximum natural entering light, acoustic comfort and high thermal insulation.
- VIG used as a double-glazing component such as:

44.2 / 15 mm Ar 90% / VIG:4



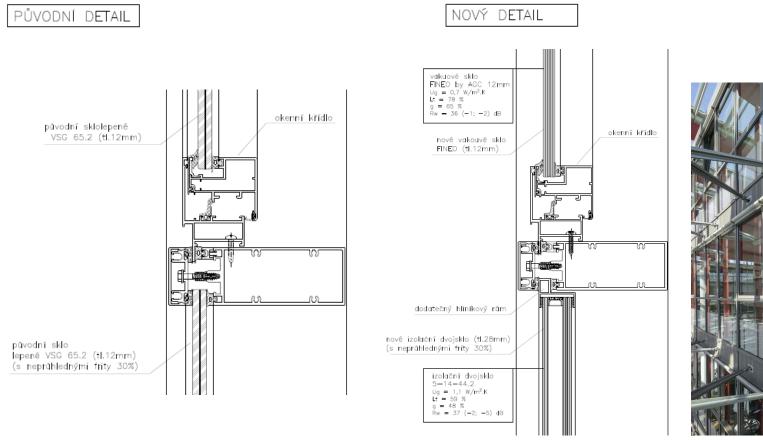
Belnine Project – Brussels (BE)

- For the **new** alu profile, a thick and soft EPDM gasket was used for the window installation (see red squared zone).
- Important feature : standard EPDM gasket.

Features	Values
Thermal glass insulation Ug	0,4 W/m²K
Thermal window insulation Uw	1 W/m²K
Noise insulation Rw	43 (-2;-3) dB
Light Transmission	68,7 %
Safety (EN 12600)	1B1
Thickness	37 mm
Weight	55 kg/m²

Nile House – Praha (CZ)

Základní informace

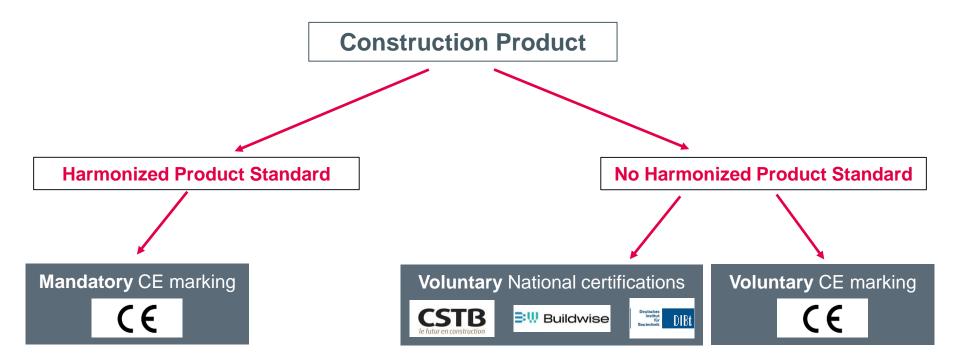

- Původní zasklení:
 - Laminované sklo 66.2 (12,8 mm)
 - $Ug = 5,4 \text{ W/m}^2\text{K}$
 - Solární faktor = 77 %
- Nové zasklení:
 - Vakuové zasklení 12 mm
 - $Ug = 0,7 W/m^2K$
 - Solární faktor = 60 %
- Celková plocha přesklení: 295 m² (138 ks)
- Celková doba přesklení: 25 dní
- Rychlost výměny: 6 8 skel / den

Nile House – Praha (CZ)

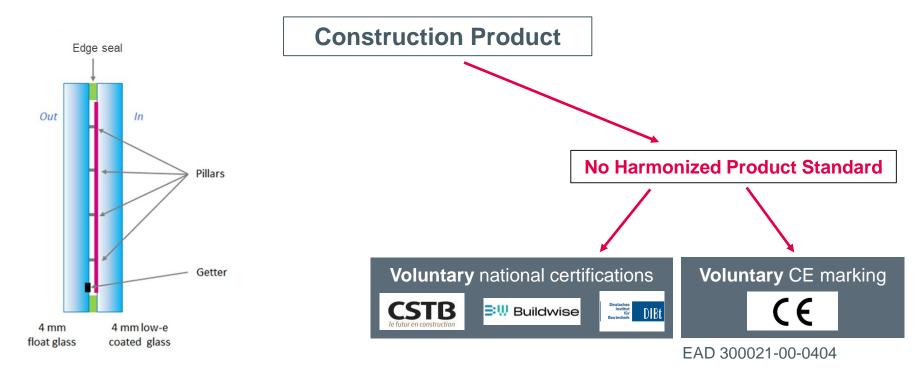
Nile House – Praha (CZ)

• Průběh reinstalace

Residential – Listed Building



4. Overview of the Certification Framework


Certification

« I have a new construction product, what are the obligations to sell it ? »

Certification

VIG is not covered (yet) by an harmonized product standard – only voluntary certification route for now.

5. Key Takeaways and Conclusion

Key Takeaways and Conclusion

- VIG offers exceptional thermal and acoustic insulation while maintaining a slim and lightweight profile.
- Due to specific load considerations, particularly thermal loads, dedicated **installation rules** must be carefully followed to ensure optimal performance.
- VIG is an excellent solution for the **restoration** of old buildings, allowing the preservation of existing frames, as well as for **modern facades** with contemporary framing systems.
- Currently, **VIG certification remains voluntary**, but this is expected to change as a standardized framework is being developed.

Thank you. Contact us: louis.dellieu@agc.com david.kelich@agc.com

